Technical value SFS intec

oba 10.06.2016

AP16 ø5,0xL

	Pull-out load	d F _z (N)				Part II) H	→Fz	
Materials	Part II (blind	side)		Part I (setti	ng side)				
<u>Rivet body:</u>	Material			Material	Test results			ults (N))
Aluminum EN AW-5019 (AW-AlMg5)	grade	R _{m,min}	t _{II} (mm)	grade	t _i (mm)	KL in mm	F _{z,avg}	s	R _k
<u>Mandrel:</u>									
Stainless steel A2 1.4541	Steel Sheet								
Metal sheet: steel or aluminum	S320 GD	390 N/mm ²	0.75				1139	22	854
	S320 GD	390 N/mm ²	1.25				2394	43	1936
Head type: dome head	S320 GD	390 N/mm ²	1.50				3188	87	2641
Rivet body: Ø = 5,0 mm	Aluminum Sh	eet							
Predrill: ø = 5,1 mm	Aluminium	190 N/mm ²	1.80				2117	113	1602
	AIMg3 1/4 hard	220 N/mm ²	2.00				2179	76	1787
Head diameter: D = 16mm	AIMg3 1/4 hard	220 N/mm ²	3.00				4355	75	3525

- []

Shear load Fq (N) Fq.awg is measured between a displacement of max 3 mm Part II (blind side) Part I (setting side)					Part II Fo	¢ C≓↓Fo	Part	:1
Material			Material			Test res	ults (N)
grade	R _{m,min}	t _{ii} (mm)	grade	t _i (mm)	KL in mm	F _{g,avg}	s	R _k
Steel Sheet S320 GD	390 N/mm ²	0.75	Steel	10.00	10.75	2525	40	1830
Aluminum S	heet							
Aluminium	190 N/mm ²	1.80	S235	10.00	11.80	3252	60	2659

Tensile breaking load Z_b (N)

←⊖⊴∮→ Z_b <u>></u> 3.950 N

Shear breaking load Q _b (N)	o⊾†
	- ^{O3} d)-
	↓°a⊾

Q_b ≥ 2.250 N

R_{m min} is the minimum standard tensile strength

of Part 1 or 2

t is the nominal steel thickness of Part 1 or 2

 $\mathsf{F}_{\mathsf{avg}}$ or $\overleftarrow{\mathsf{X}}$ are the arithmetic mean values of the test results.

s is the standard deviation.

All calculations, measurements, fasteners and design methods have to be verified by a responsible R_k is the caracteristic resistance of fastenings according to the EN requirements norms and approvals. norms and approvals.

Evaluatio	on of the characteristic value R_k for the F_z , F_u a	nd F _q : equation	ons (1) and (2)	
	(1)	$\alpha = (R_{m,min})$	/R _{m,obs} * t _{min} /t _{obs})	(2)
$R_k = (F_{avg})$	_g -k*s)*α			
		, where	R _{m,min} is the minimum standard tens	ile strength of Parts 1 or 2
, where	F_{avg} is the mean of ultimate failure loads, and corresponds to tests: F_z , F_u and F_q k is the statistical coefficient s is the standard deviation α is the material correction factor		$R_{m,obs}$ is the actual, tested tensile st t_{min} is the minimum standard steel th t_{obs} is the actual, tested steel thickness	nickness of Parts 1 or 2
		Sources:		
- k = 2,04 - the max betweer - Part 1 is	nple size n for all tests is 12 pieces 48 with a sample size n = 12 ximum value of F_{avg} for shear load, is obtained n a displacement of 0,5-3,0mm s considered critical for failure in shear unless se marked	- thicknes - design th	properties according to the European p s tolerances according to the European nickness t _{min} for aluminium is set to 90% nods according to EN 1993-1-3, CUAP	product standards (EN) of the nominal